Dougherty Valley HS Chemistry Gas Laws – Basic Gas Law Equations

Name:

Period: Se

Worksheet #2

Seat#:

С	Conceptual Questions								
	1)	Summarize the probullet points are tot	operties of gass tally fine!	es –		2) Summ bullet p	arize the points an	assumptions of e totally fine!	KMT –
	3)	What does "Absolu mean? What unit is in?	ite Zero" s it measured	4) Wi	hat is the eq m Celsius to	uation to cor Kelvin	nvert	5) Which mole when at the H ₂ or N ₂ ?	ecule will go faster e same temperature – Why?
	6)	What does STP stand for? What are the conditions at STP? 7) What is the difference of the conditions at STP?		ference betw	veen an	Ideal Gas and a	Real Gas?		
	8)	If temp. goes ↑ then pressure goes:	9) If volume then press goes:	goes ↑ ure	10) If press ↑ then goes:	sure goes volume	11) If the good	emp. goes ↓ en volume es:	12) If moles of gas goes ↑ then volume goes:

Mathematical Questions

- Identify the variables involved
- Identify the equation that you will be using formula AND the name!
- Show plugging in the variables to the correct places in the equation
- Get an actual answer, including units! Box your answer!
- Don't forget you must show units and any conversions that might be involved.
- You can either rearrange your equation before you plug in your variables, or after. Do what works for you!

13) 1.00 L of a gas at standard temperature and pressure is compressed to 473 mL. What is the new pressure	
of the gas? <u>2.11 atm</u>	

<u>Variables</u>	Equation Name:	Boyle's Law	Equation Formula:	$P_1V_1 = P_2V_2$	
$P_1 = 1 atm$					
$P_2 = ?$					
$V_1 = 1.00 L$					
V ₂ = 473 mL					
= 0.473 L					

Dougherty Valley HS Chemistry Gas Laws – Basic Gas Law Equations

14) A sample of gas at 3.00 x 10 ³ mm Hg inside a steel tank is cooled from 500.0 °C to 0.00 °C. What is the final pressure of the gas in the steel tank? <u>1.06 x 10³ mmHg</u>				
<u>Variables</u>	Equation Name:	Equation Formula:		
15) The temperature	incide my refrigerator is about 4,000 C. If L	place a halloon in my fridge that initially has a		
temperature of 2 my refrigerator?	2.00 ^o C and a volume of 0.500 L, what will b $0.47 L$	e the volume of the balloon when it is fully cooled by		
<u>Variables</u>	Equation Name:	Equation Formula:		
16) If a balloon alrea it be holding if it o	dy has 0.05 moles of helium gas in it and ha ends up 1.2 L in size? <u>0.12 moles</u>	as a volume of 500mL, how many moles of gas would		
<u>Variables</u>	Equation Name:	Equation Formula:		
17) Curath atia diaman				
and compressed it to a pressure of 6.00 x 10^4 atm, what would the volume of that gas be? <u>3.5 x $10^5 L$</u>				
<u>Variables</u>	Equation Name:	Equation Formula:		

Dougherty Valley HS Chemistry Gas Laws – Basic Gas Law Equations

18) If I initially have a gas at a pressure of 12 atm, a volume of 23 liters, and a temperature of 200 K, and then I raise the pressure to 14 atm and increase the temperature to 300 K, what is the new volume of the gas? <u>29.57 L</u>				
<u>Variables</u>	Equation Name:	Equation Formula:		
19) Calculate the fina pressure in the ta	al pressure (in psi) inside a scuba tank after ank is 130.0 atm. <u>447 psi</u>	it cools from 1.00 x 10 ³ °C to 25.0 °C. The initial		
Variables	Equation Name:	Equation Formula:		
20) In a thermonucle the bomb casing pressure of 1.00	ar device, the pressure of 0.050 L of gas wi is destroyed by the explosion, the gas is re atm. What is the volume of the gas after the	thin the bomb casing reaches 4.0×10^6 atm. When leased into the atmosphere where it reaches a e explosion? <u>2.0 x 10⁵ L</u>		
<u>Variables</u>	Equation Name:	Equation Formula:		
21) On hot days not	ato chin have seem to "inflate", even though	they have not been opened. If a 250.0 ml hag is at a		
temperature of 19.0°C, and I leave it in my car, which has a temp of 60.0° C, what will the new volume of the bag be? <u>0.285 L</u>				
<u>Variables</u>	Equation Name:	Equation Formula:		

22) A soda bottle is flexible enough that the volume of the bottle can change even without opening it. If you have an empty 2.00 L soda bottle at room temp (25.0°C), what will the new volume be if you put it in your freezer (-4.00 °C)? <u>1.81 L</u>				
<u>Variables</u>	Equation Name:	Equation Formula:		
23) The temperature What is the final p	of a sample of gas in a steel container at 30 pressure inside the tank? <u>220.8 kPa</u>	0.0 kPa is increased from -100.0 °C to 1.00×10^3 °C.		
<u>Variables</u>	Equation Name:	Equation Formula:		
24) The temperature three. What is th	of a sample of gas in a steel container at 25 e final pressure inside the tank? <u>8.33 <i>k</i>Pa</u>	5.0 kPa starts at -50 °C and decreases by a factor of		
Variables	Equation Name:	Equation Formula:		
25) 500.0 mL of a gas was collected at 20.0 °C and 720.0 mm Hg. What is its volume at STP? <u>0.441 L</u>				
<u>Variables</u>	Equation Name:	Equation Formula:		

26) A gas that has a volume of 28 liters, a temperature of 45 °C, and an unknown pressure has its volume increased to 34 liters and its temperature decreased to 35 °C. If I measure the pressure after the change to be 2.0 atm, what was the original pressure of the gas? <u>2.5 atm</u>				
<u>Variables</u>	Equation Name:	Equation Formula:		
27) If the absolute t	omporature of a given quantity of gas is	doubled and the process tripled what		
happens to the	volume of the gas? <u>Will decrease by 1/3</u>	doubled and the pressure inpled, what		
<u>Variables</u>	Equation Name:	Equation Formula:		
28) A cylinder with a cylinder and the were added to the	moveable piston contains 2.00 g of helium volume was adjusted so that the gas pressu e cylinder if the volume was changed from 2	at room temperature. More helium was added to the ure remained the same. How many grams of helium 2.00 L to 2.70 L? <u>0.7 g</u>		
<u>Variables</u>	Equation Name:	Equation Formula:		
29) You have two col about the numbe molecules in eac same, faster, slow	ntainers at STP. Flask #1 contains F2 gas a r of moles of molecules in each flask, and v h flask? (In other words compare Flask #1 t wer, etc)	nd flask #2 contains CO ₂ gas. What can you say what can you say about the average speed of the to Flask #2 – think about terms such as more, less,		